

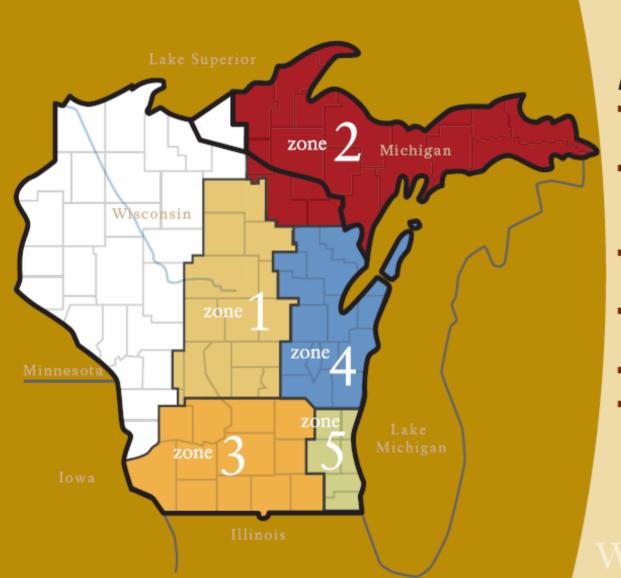
ATC PLANNING UPDATE

Zone 2 Transmission Business Briefing November 7, 2006

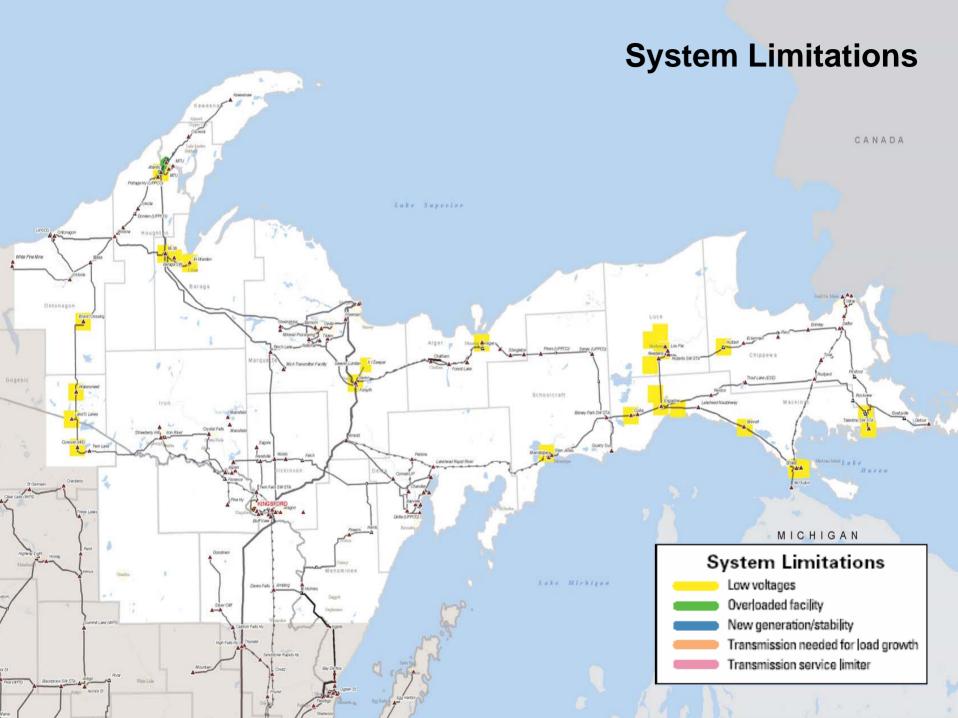
Brett French
Senior Regional Manager
Customer Relations

Steve Feak
Principal Engineer
ATC Planning Zone 2

- 10 Year Assessment
 - Zone 2 Update
- Eastern Upper Peninsula
 - Asset Renewal
 - Local Load Serving
 - Loop Flow


10 Year Assessment

- ATC Planning processes are:
 - Continuous
 - Iterative
 - Transparent
 - Effectively performed at "Regional & Local" levels
- Annual Report posted in Fall
 - Full Report Posted on ATC Website November 8th
 - www.atcllc.com
 - Zone 2 Summary (see handout)
- Update posted in Spring


ATC Planning Zones

ATC at a glance

- Formed in 2001 as the first multi-state, transmission-only utility.
- Owner and operator of approximately
 8,900 miles of transmission line and
 460 substations.
- Meeting electric needs of approximately five million people.
- Transmission facilities in 66 counties in Wisconsin, Michigan and Illinois.
- \$1.3 billion in total assets.
- Seven offices in the communities of Cottage Grove, De Pere, Madison, Waukesha and Wausau, Wis.; Kingsford, Mich.; and Washington DC.

www.atcllc.com

ATC Project Categories

Planned	Proposed	Provisional	
Studies complete	Studies not complete	Studies not complete	
Application pending or issued	None	None	
Project in construction planning phase or under construction	Project identified as preferred alternative	Placeholder project; not necessarily a preferred project alternative	

Zone 2 Summary Projects

	Project description	In-service year	Need driver
	Planned projects		
	Stiles-Amberg double-circuit 138-kV line rebuild	2006	Improves reliability, helps increase import capability, reduces reliance on operating guides, lowers system losses
2	Cranberry-Conover 115-kV line and Conover- Iron River-Plains rebuild & conversion to 138 kV	2008	Part of Cranberry-Conover project (Zone 1) for Rhinelander Loop, improves voltage profile in the area, addresses aging facilities with condition issues
	Proposed projects		
}	Relocate Cedar Substation (North Lake)	2008	Improves reliability in the area, addresses aging facilities in poor condition
1	Hiawatha-Pine River 69-kV line rebuild & conversion to 138 kV	2009	Addresses potential overloads of existing lines in the area, addresses aging facilities in poor condition, improves voltage profile in the area, accommodates future expansion in the area
	Provisional projects		
	Convert Hiawatha-Indian Lake double-circuit 69-kV line to 138-kV operation	TBD	Addresses chronic transmission service limitation, improves voltage profiles in the area, enhances value of another provisional project
5	Replace the existing Straits Substation (Mackinac)	TBD	Improves reliability in eastern UP, addresses substation facilities in poor condition, provides for future expansion
7	Blaney Park-Munising 69-kV line rebuild & conversion to 138 kV	2012	Addresses low voltages in the area, improves stability of Presque Isle generation, addresses aging facilities in poor condition

System Solutions

Eastern U. P. Issues

- Asset Renewal (Age & Condition)
 - Pine River Substation
 - Hiawatha Pine River 69 kV circuit
- Local Load Serving (low voltage & overloads)
 - Case 1: Loss of Hiawatha Straits 138 kV circuit
 - Case 2: Loss of Straits McGulpin circuits
 - Loss of ESE hydro output (anchor ice)
 - High Voltage at Straits
- Loop Flow (voltage & overloads)
 - Case 3: Heavy West >> East flow
 - Case 4: System Split due to Heavy Flow

Case 1 Loss of Hiawatha – Straits Circuit

ISSUES:

- Marginal Eastern U.P. system voltages (pre-contingency)
- Unacceptable voltages for loss of Hiawatha Straits circuit
- Voltage issues exacerbated by heavy <u>East >> West</u> flows
- System split to manage heavy <u>East >> West</u> flow

SOLUTIONS:

- Improved performance with the addition of:
 - Capacitors at Perkins, Indian Lake and Hiawatha substations
 - Construction of 138 kV substation at Hiawatha
 - Indian Lake Hiawatha double circuit operated at 138 kV
- Splitting of system may still be required to manage heavy flows

Case 1 Loss of Hiawatha – Straits Circuit

Segment 1:

- 2013 System Peak no solutions applied
 - Marginal Eastern U.P. voltages
 - Outage of Hiawatha Straits 138 kV circuit = inadequate voltages

Segment 2:

- Add H-IL double circuit 138 kV & Hiawatha 138 kV substation
 - Marginal Eastern U.P. voltages
 - Outage of Hiawatha Straits 138 kV circuit = marginal voltages

Segment 3:

- Add 138 kV capacitors at Perkins, Indian Lake and Hiawatha
 - Marginal Eastern U.P. voltages
 - Outage of Hiawatha Straits 138 kV circuit = marginal voltages

Segment 4:

- Add 138 kV capacitors, H IL double circuit 138 kV & Hiawatha 138 kV SS
 - Acceptable Eastern U.P. voltages
 - Outage of Hiawatha Straits 138 kV circuit = acceptable voltages

Case 2 Loss of Straits – McGulpin Circuits

ISSUES:

- Voltage collapse occurs in Eastern U.P. for loss of both circuits
- Increased exposure risk when one circuit has been removed from service for repair/maintenance (late summer/fall 2006)
- Loss of both circuits has not occurred to date

SOLUTIONS:

- Improved performance with the addition of:
 - Capacitors at Perkins, Indian Lake and Hiawatha substations
 - Construction of 138 kV substation at Hiawatha
 - Indian Lake Hiawatha double circuit operated at 138 kV

Loss of Straits - McGulpin Circuits

Segment 1:

- 2013 System Peak no solutions applied
 - Outage of Straits McGulpin circuits = SYSTEM COLLAPSE

Segment 2:

- Add H-IL double circuit 138 kV & Hiawatha 138 kV substation
 - Outage of Straits McGulpin circuits = inadequate voltages

Segment 3:

- Add 138 kV capacitors at Perkins, Indian Lake and Hiawatha
 - Outage of Straits McGulpin circuits = inadequate voltages

Segment 4:

- Add 138 kV capacitors, H IL double circuit 138 kV & Hiawatha 138 kV SS
 - Outage of Straits McGulpin circuits = acceptable voltages

Case 2

Case 3 Heavy West >> East Flow

ISSUES:

- Inadequate voltages at Perkins and Indian Lake
- Overloaded 138/69 kV Transformer at Indian Lake
- Overloaded Hiawatha Indian Lake 69 kV circuit 6913
- Transfer Capacity limited to 113 MW at Indian Lake
- System split to manage heavy West >> East flow

SOLUTIONS:

- Improved performance with the addition of:
 - Capacitors at Perkins, Indian Lake and Hiawatha substations
 - Construction of 138 kV substation at Hiawatha
 - Indian Lake Hiawatha double circuit line operated at 138 kV
- Splitting of system may still be required to manage heavy flows

Case 3 Heavy West >> East Flow

• Segment 1:

- 2013 System Peak no solutions applied
 - Imports to LP cause heavy West >> East flow = inadequate voltages

Segment 2:

- Add 138 kV capacitors at Perkins, Indian Lake and Hiawatha
 - West >> East transfer capacity at Indian Lake = 113 MW
 - Outage of Indian Lake transformer No. 1 = overload of transformer No. 2

Segment 3:

- Add 138 kV capacitors at Perkins, Indian Lake and Hiawatha
 - West >> East transfer capacity at Indian Lake = 113 MW
 - Outage of H IL circuit 6912 = overload of H IL circuit 6913

Segment 4:

- Add 138 kV capacitors, H IL double circuit 138 kV & Hiawatha 138 kV SS
 - West >> East transfer capacity at Indian Lake = 160 MW
 - Loss of Hiawatha Straits 138 kV circuit = marginally acceptable loading on Pine River – Straits 69 kV circuit

Case 4 System Split due to Heavy Flow

ISSUES:

- Inadequate Eastern U.P. voltage for loss of Hiawatha Straits
 138 kV circuit when system is split
- System split to manage heavy <u>West >> East</u> or <u>East >> West</u> flow
- Occurring with increasing regularity and severity due to evolving system conditions

SOLUTIONS:

 Improved performance achieved with the addition of capacitors at Perkins, Indian Lake and Hiawatha substations

Case 4 System Split due to Heavy Flow

Segment 1:

- 2013 System Peak no solutions applied
 - Marginal Eastern U. P. voltages
 - Eastern U.P. system split (6912 @ Indian Lake and 6913 @ Hiawatha)
 - Outage of Hiawatha Straits 138 kV circuit = inadequate voltages

Segment 2:

- Add 138 kV capacitors at Perkins, Indian Lake and Hiawatha
 - Acceptable Eastern U. P. voltages
 - Outage of Hiawatha Straits 138 kV circuit = acceptable voltages

Eastern U. P. Solutions

Eastern U. P. Summary

Project Name	Key Need Drivers	Projected In-Service Date	Projected Cost	Status
J: Rebuild Pine River SS	Age & Condition	3 rd Quarter 2008	~ \$5 M	Currently in "Pre-Approval" and Development to define project scope, cost and schedule
K : Rebuild Hiawatha – Pine River 69 kV Line	Age & Condition	2010	~ \$60 M	Will start "Pre-Approval" and Development to define project scope, cost and schedule in January 2007
L: 138 kV CAP at Perkins SS	Low system voltages	TBD	TBD	"Proposed" - Studies Complete, Under Review
M: 138 kV CAP at Indian Lake SS	Low system voltages	TBD	TBD	"Proposed" - Studies Complete, Under Review
N: 138 CAP at Hiawatha SS	Low system voltages	TBD	TBD	"Proposed" - Studies Complete, Under Review
O: New Hiawatha 138 kV SS	Required for 138 kV line terminations and installation of 138 kV CAP	TBD	TBD	"Proposed" - Studies Complete, Under Review
P: Operate Hiawatha – Indian Lake double circuit at 138 kV High equipment loadings; low voltages; limited transfer capability		TBD	TBD	"Proposed" - Studies Complete, Under Review
Q: New Mackinac 138/69 kV SS, install 138 kV Reactor	High voltage, System Protection, Age & Condition, Reliability	TBD	TBD	"Proposed" - Studies Complete, Under Review

Management of Heavy Flow

- Proposed solutions won't resolve all "futures"
 - Load reductions at Tilden or Empire Mines
 - Unit retirements at Presque Isle Power Plant
 - Increased imports to Lower Peninsula
 - Additional generation proposed at Escanaba
 - New generation proposed at Rogers City
 - Reduced ESE hydro output ("anchor ice" condition)
 - These "futures" exacerbate heavy flows
- Continue to manage flow with "Operational" Solution
 - Impact on Customers
 - MISO Day 2 Market
 - System Losses
 - Reliability
 - Access to Resources
- Installation of "Flow Control" equipment
 - Phase Shifter (Approximate cost: ~ \$10 \$20M)
 - High Voltage DC Control (Approximate cost: ~ \$20+M)
 - Management of flow reduces "system losses"

FEEDBACK & QUESTIONS